1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
| "max_error", "mean_absolute_error", "mean_absolute_percentage_error", "mean_squared_error", "mean_squared_log_error", "median_absolute_error",
return np.average(output_errors, weights=multioutput)
def mean_absolute_percentage_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute percentage error regression loss Note here that we do not represent the output as a percentage in range [0, 100]. Instead, we represent it in range [0, 1/eps]. Read more in the :ref:`User Guide <mean_absolute_percentage_error>`. Parameters ---------- y_true : array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. multioutput : {'raw_values', 'uniform_average'} or array-like Defines aggregating of multiple output values. Array-like value defines weights used to average errors. If input is list then the shape must be (n_outputs,). 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats in the range [0, 1/eps] If multioutput is 'raw_values', then mean absolute percentage error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAPE output is non-negative floating point. The best value is 0.0. But note the fact that bad predictions can lead to arbitarily large MAPE values, especially if some y_true values are very close to zero. Examples -------- >>> from sklearn.metrics import mean_absolute_percentage_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_percentage_error(y_true, y_pred) 0.3273... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_percentage_error(y_true, y_pred) 0.5515... >>> mean_absolute_percentage_error(y_true, y_pred, multioutput=[0.3, 0.7]) 0.6198... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) check_consistent_length(y_true, y_pred, sample_weight) epsilon = np.finfo(np.float64).eps mape = np.abs(y_pred - y_true) / np.maximum(np.abs(y_true), epsilon) output_errors = np.average(mape, weights=sample_weight, axis=0) if isinstance(multioutput, str): if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': multioutput = None
return np.average(output_errors, weights=multioutput)
def mean_squared_error(y_true, y_pred, sample_weight=None,
|